Concentration quenching of Eu^{2+} in SrO \cdot 6Al₂O₃ : Eu²⁺ phosphor

DONG WANG, QINGRUI YIN, YONGXIANG LI Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, People's Republic of China

MINQUAN WANG State Key Lab of Silicon Materials Science, Zhejiang University, Hangzhou 310027, People's Republic of China E-mail: W_dong@yahoo.com

In SrO \cdot 6Al₂O₃: Eu²⁺ phosphor, blue Eu²⁺ luminescence is observed from Eu²⁺ on the strontium site present in the lattice. The concentration quenching process between Eu²⁺ ions is determined and the corresponding concentration quenching mechanism is verified as dipole-dipole interaction. The value of the critical transfer distance is calculated as 25 Å and its reliability is confirmed by using Dexter's theory on energy transfer. © 2002 Kluwer Academic Publishers

1. Introduction

 $SrO \cdot 6Al_2O_3$: Eu²⁺ is well known as a high-efficiency phosphor with good stability. It has been widely studied and reported [1–4]. The crystal structure of the aluminate with the formula $SrAl_{12}O_{19}$ is known as the magnetoplumbite structure, from the mineral magnetoplumbite PbFe₁₂O₁₉, in which this structure was first found. Eu²⁺, incorporated as an activator in the phosphor, may be built into the intermediate layers of the aluminate lattice on the sites of the large cations. In order to study further the interaction between the host lattice micro-structure and the luminescent properties of the phosphors, the relationship between Eu²⁺ luminescence and the lattice positions occupied by Eu²⁺ are examined and the Eu^{2+} critical concentration at which appreciable quenching occurs is determined. The value of the critical distance of energy transfer in $SrO \cdot 6Al_2O_3 : Eu^{2+}$ and the transfer mechanism in Eu^{2+} are found and verified from the Eu^{2+} critical concentration and Dexter's theory for energy transfer [5].

2. Experimental

According to the nominal composition $(Sr_{1-x}Eu_x)O \cdot 6Al_2O_3$ (x = 0.01 ~ 0.08), appropriate amounts of the starting materials SrCO₃(AR), Al(OH)₃(AR), Eu₂O₃ (99.99%) and a little flux H₃BO₃ (AR) were thoroughly mixed and ground in an agate ball mill for 4 h. Subsequently, the mixture was prefired at 1000°C for 5 h. After milling for a second time, the samples were calcined at 1300°C for 4 h in a reducing atmosphere.

All measurements were performed on powder samples. The emission and excitation spectra were recorded on a Hitach 850 fluorescence spectrometer. A Rigaku D/Max ~ 3B X-ray diffractometer (Cu K_{α}, 40 kV × 35 mA), used in a step-scan mode (0.022°/2 θ), was used to collect the power diffraction data for Rietveld analysis.

3. Results and discussion

3.1. Concentration quenching law of Eu²⁺ in SrO · 6Al₂O₃: Eu²⁺ phosphor

The two sites available for incorporating Eu^{2+} in the $SrO \cdot 6Al_2O_3$ lattice are either the Al^{3+} sites or the Sr^{2+} sites. In $SrO \cdot 6Al_2O_3$, there are six different sites for Al^{3+} and only one site for Sr^{2+} . Al^{3+} is small (0.50 Å) but Sr^{2+} is almost equal in size to $Eu^{2+}(1.13 \text{ Å vs } 1.12 \text{ Å})$. The crystal structure of $(Sr_{0.96}Eu_{0.04})O \cdot 6Al_2O_3$ phosphor is refined by Rietveld analysis [6] and the analyzed results are shown in Table I (where, R_p and R_{wp} are the pattern *R*-factor and weighted pattern R-factor respectively. When the values of them are less than 10%, the implication is that the refinement results are good and reasonable [7]; x/a y/b z/c are the fraction coordinates of the different atoms in the cell, which define crystal axes as coordinate axes and the length of cell edges as unit length. N_{total} represents the sum of equivalent atoms in the cell). As shown in Table I, it is found that the incorporation of Eu^{2+} ions into the SrO \cdot 6Al₂O₃ crystal lattice does not cause any significant lattice distortions. Eu^{2+} ions occupy the Sr^{2+} sites and substitute for 3.96% of the Sr^{2+} ions. The occupation ratio of Eu²⁺ in the lattice is approximately equal to the nominal doping amount (4%), which indicates that Eu²⁺ ions only replace Sr^{2+} ions. The excitation and emission spectra of $(Sr_{1-x}Eu_x)O \cdot 6Al_2O_3$ (x varies from 0.01 to 0.106) phosphors are presented in Fig. 1. From Fig. 1 it can be seen that only an asymmetrical emission band is observed at 398 nm in the emission spectra of $SrO \cdot 6Al_2O_3$: Eu²⁺ phosphor. With an increase

TABLE I The structure of (Sr_{0.96}Eu_{0.04}) O \cdot 6Al_2O_3 phosphor from Rietveld refinement

Composition phase	System and space group	Crystal cell parameters				R-factor	
		a (Å)	<i>b</i> (Å)	<i>c</i> (Å)	V(Å ³)	R _p	R _{wp}
$SrO \cdot 6Al_2O_3$	Hexagonal, P6 ₃ /mmc	5.5637	5.5637	22.0134	590.12	6.16%	8.55%
	Fraction coordinate and Total number of equivalent atom in unit cell						
Atom	x/a	y/b		z/c		N _{Total}	
Sr 1	0.6667	0.3333		0.2500		1.9208	
Eu 1	0.6667	0.3333		0.2500		0.0792	
Al 1	0.0000	0.0000		0.0000		2.0000	
Al 2	0.0000	0.0000		0.2500		2.0000	
Al 3	0.3333	0.6667		0.0283		4.0000	
Al 4	0.1689	0.3378		-0.1083		12.000	
Al 5	0.3333	0.6666		0.1906		4.0000	
01	0.0000	0.0000		0.1479		4.0000	
O 2	0.3333	0.6667		-0.0539		4.0000	
03	0.1824	0.3649		0.2500		6.0000	
O 4	0.1564	0.3128		0.0520		12.000	
O 5	0.5016	0.0032		0.1474		12.000	

Figure 1 The excitation spectra^a (emission 397.9 nm) and emission spectra^b (excitation 268.2 nm) of $(Sr_{1-x}Eu_x)O \cdot 6Al_2O_3$ (x = 0.01, 0.018, 0.024, 0.034, 0.04, 0.072 from bottom to top) phosphors.

in the Eu²⁺ concentration, the shapes and positions of emission and excitation bands have no obvious changes. The dependence of the emission intensity on the Eu²⁺ concentration under 254 nm excitation for the $(Sr_{1-x}Eu_x)O \cdot 6Al_2O_3$ (*x* varies from 0.01 to 0.08) is shown in Fig. 2.

From the results of Table I and Fig. 2, it can be seen that Eu^{2+} ions only occupy Sr^{2+} sites in the $SrO \cdot 6Al_2O_3 : Eu^{2+}$ lattice and form the corresponding emission center, which peaks at about 400 nm. With an increase in the Eu^{2+} concentration, the emission intensity of $SrO \cdot 6Al_2O_3 : Eu^{2+}$ phosphor increases gradually.

The critical quenching concentration of $Eu^{2+}(x_c)$ is defined as the concentration at which the emission intensity begins to decrease and the critical distance corresponding to the critical quenching concentration is defined as the average distance between the

Figure 2 Emission intensity as a function of Eu^{2+} concentration (*x*) for $(Sr_{1-x}Eu_x)O \cdot 6Al_2O_3$ (*x* = 0.01, 0.018, 0.024, 0.028, 0.034, 0.04, 0.052, 0.064, 0.072, 0.08) phosphors ($\lambda_{ex} = 268.2$ nm).

nearest Eu^{2+} ions between which energy transfer occurs. From Fig. 2 it can be seen that the critical concentration of Eu^{2+} in SrO \cdot 6Al₂O₃ : Eu^{2+} phosphor is about 3.6%.

3.2. Critical transfer distance (R_c) in SrO · 6Al₂O₃ : Eu²⁺ phosphor

When considering the mechanism of energy transfer in oxide phosphors, Blasse [8] has pointed out that if the activator is introduced solely on Z ion sites, x_c is the critical concentration, N the number of Z ions in the unit cell and V is the volume of the unit cell, then there is on the average one activator ion per V/x_cN . The critical transfer distance (R_c) is approximately equal to twice the radius of a sphere with this volume:

$$R_c \approx 2 \left(\frac{3V}{4\pi x_c N}\right)^{1/3} \tag{1}$$

By taking the appropriate values of V, N and x_c (590.12 Å³, 2, 0.036, which are shown in Table I and Fig. 2), the critical transfer distance of Eu²⁺ in SrO · 6Al₂O₃ : Eu²⁺ phosphor is found to be 25 Å.

According to Dexter's theory on non-radiative energy transfer, the critical transfer distance of Eu^{2+} can also be calculated from the spectral experimental data, i.e. the value of the critical transfer distance (R_c) can be found from [5]

$$R_c = 0.36 \times 10^{28} \frac{4.8 \times 10^{-16} P}{E^4} S.O.$$
 (2)

Where *P* is the oscillator strength of the absorption transition of the Eu²⁺ ion, *E* the energy of maximum spectral overlap, and *S*.*O*. the spectral overlap integral. For *P* a value of 10^{-2} for the broad $4f^7 \rightarrow 4f^{6}5d^{1}$ absorption band is taken [9]. *E* and *S*.*O*, which are derived from the spectral experimental data, are 2.92 eV and 0.84 eV^{-1} respectively. This gives a calculated value of R_c for the energy transfer between inequivalent Eu²⁺ ions in SrO $\cdot 6Al_2O_3$: Eu²⁺ of about 24 Å. Thus the calculated crystal structure data and the experimental spectral data give results for R_c which are in agreement.

3.3. Mechanism of energy transfer in SrO · 6Al₂O₃ : Eu²⁺ phosphor

Non-radiative energy transfer from a Eu²⁺ ion to another Eu²⁺ ion may occur by exchange interaction, radiation reabsorption or multipole-multipole interaction. Eu^{2+} is an isolated emission center in SrO $6Al_2O_3: Eu^{2+}$ phosphor. The $4f^7 \rightarrow 4f^65d^1$ transition of Eu²⁺ is allowed while exchange interaction is responsible for the energy transfer for forbidden transitions and typical critical distances are then about 5 Å [5]. This indicates that the mechanism of exchange interaction plays no role in energy transfer between Eu^{2+} ions in SrO \cdot 6Al₂O₃ : Eu^{2+} phosphor. The mechanism of radiation reabsorption comes into effect only when there is broad overlap of the fluorescent spectra of the sensitizer and activator and in the view of the emission and excitation spectra of SrO \cdot 6Al₂O₃ : Eu²⁺ phosphor is unlikely to be occurring in this case. Since the fluorescent mechanism of Eu^{2+} in $SrO \cdot 6Al_2O_3 : Eu^{2+}$ phosphor is the $4f \rightarrow 5d$ allowed electric-dipole transition, the process of energy transfer should be controlled by electric multipole-multipole interaction according to Dexter's theory [5]. If the energy transfer occurs between the same sort of activators, the intensity of multipolar interaction can be determined from the change of the emission intensity from the emitting level which has the multipolar interaction. The emission intensity (I) per activator ion follows the equation [10, 11]:

$$I/x = K[1 + \beta(x)^{Q/3}]^{-1}$$
(3)

where, x is the activator concentration; Q = 6, 8 or 10 for dipole-dipole, dipole-quadrupole or quadrupolequadrupole interactions respectively; and K and β are constant for the same excitation conditions for a given host crystal.

Since the critical concentration of Eu^{2+} has been determined as 3.6%, the dependence of the emission intensity of the SrO \cdot 6Al₂O₃ : Eu²⁺ phosphor excited at 268.2 nm as a function of the corresponding concentration of Eu²⁺ for concentrations greater than the critical

Figure 3 Log of the emission intensity per activator ion $(\lg I/x_{Eu^{2+}})$ as a function of log of the Eu²⁺ concentration $(\lg x_{Eu^{2+}})$ in $(Sr_{1-x}Eu_x)O \cdot 6Al_2O_3$ phosphors ($\lambda_{ex} = 268.2$ nm).

concentration (3.6%) is determined (see Fig. 3). It can be seen from Fig. 3 that the dependence of $\lg I/x_{Eu^{2+}}$ on $\lg x_{Eu^{2+}}$ is linear and the gradient is -2.0729. The value of Q can be calculated as 6.2, which is approximately to 6. This indicates that dipole-dipole interaction is the concentration quenching mechanism of Eu²⁺ emission in the SrO \cdot 6Al₂O₃ : Eu²⁺ phosphor.

4. Conclusions

1. Eu^{2+} ions only occupy Sr^{2+} sites and form one emission center at about 400 nm. With an increase in the Eu^{2+} concentration, the excitation energy is quenched by lattice defects.

2. The critical quenching concentration of Eu^{2+} in SrO $\cdot 6Al_2O_3 : Eu^{2+}$ phosphor is determined as 3.6%. From crystallographic data, the critical transfer distance is calculated as 25 Å which is in good agreement with the value derived from the spectral experimental data.

3. The mechanism of concentration quenching of Eu^{2+} in $SrO\cdot 6Al_2O_3:Eu^{2+}$ phosphor is determined to be dipole-dipole interaction.

Acknowledgement

The project is supported by National Natural Science Foundation (No. 69890230).

References

- 1. G. BLASSE and A. BRIL, Philips Res. Repts. 23 (1968) 201.
- 2. J. M. P. J. VERSTEGEN, J. Electrochem. Soc. Sol-Stat. Sci. and Tech. 12 (1974) 1623.
- 3. A. L. N. STEVELS and A. D. M. SCHRAMA-DE PAUW, J. Luminescence 14 (1976) 153.
- 4. J. L. SOMMERDIJK and A. L. N. STEVELS, *Philips Technical Review* **37**(9) (1977) 221
- 5. D. L. DEXTER, J. Chem. Phys. 21 (1953) 836.
- 6. H. M. RIETVELD, Acta Cryst. 22 (1967) 151; J. Appl. Cryst. 2(1969) 65.
- 7. LIANG JINGKUI, Jiegou Huaxue 4(4) (1985) 241.
- 8. G. BLASSE, Philips Res. Repts. 24 (1969) 131.
- 9. Idem., J. Solid State Chem. 62 (1986) 207.
- 10. L. G. VAN UITERT, J. Electrochem. Soc. 114(10) (1967) 1048.
- 11. L. OZAWA and P. M. JAFFE, *ibid*. **118** (1971) 1678.

Received 5 May 2000 and accepted 28 August 2001